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a b s t r a c t

The steady conduction regime of exothermic chemical reactions in a packed bed reactor is investigated
analytically. A plane-parallel stratification of the reactive granular material is assumed which modulates
the rate of the local volumetric heat generation in the reactor. The approach is based on an exactly solvable
nonlinear mathematical model which involves two experimentally accessible control parameters, the
eywords:
xothermic reaction
acked bed reactor
rganized structure
teady states
onlinear model

intensity parameter � > 0 and stratification parameter s ≥ 0, respectively. In terms of these parameters, the
existence domain of the steady temperature solutions and the occurrence of hot spots are discussed. For
a given value of the stratification parameter, an upper bound �max(s) of the intensity parameter has been
found, such that above of this maximum value of � the reactor becomes thermally uncontrollable. Below
�max(s), unique as well as dual solutions exist. The former ones describe high temperature steady states
of the reactor, while the dual solution branches are associated with low and high temperature reaction
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nalytical solutions regimes, respectively. The

. Introduction

The present paper is concerned with parallel-plane packed bed
eactors having a stratified structure in the transversal direction,
nd an internal volumetric heat generation by exothermic reactions.
odel calculations are reported which apply to the steady conduc-

ion regime of such reactors, encountered in the chemical process
ngineering, in civil engineering, combustion engineering, thermal
xplosion control and environmental energy engineering. Specific
xamples in these fields are the ethanol production from cereals
n anaerobic fermenters, hardening of the cement paste of massive
oncrete members, burning of granular fuels, thermal explosion
fine powders, degradation of organic waste materials in aerobic

eactors and natural landfills, etc. Since the temperature and heat
ransfer control belong to the most important factors in all these
rocesses, a special attention is given in the paper to the occurrence
f hot spots [1] and to the upper bounds of the existence domain
f steady solutions, [2]. The hot spots due to the excessive fermen-
ation heat generation may decelerate the reaction by killing the

east in the fermenter (see, e.g. [3]). During the hardening of mas-
ive concrete slabs, the hot spots due to the hydration heat release
ay lead to early-age thermal stresses. This may cause cracking,
hich in turn reduces the durability of highly expensive structures,
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res of the corresponding temperature distributions are examined in detail.
© 2008 Elsevier B.V. All rights reserved.

4–6]. In rapid-hardening cement-based fiber composites, e.g. adia-
atic temperature maxima up to 140 ◦C have been measured, [7]. In
ombustion processes of fine granular materials, by contrast, where
he overrunning of the ignition temperature is a necessary condi-
ion of the steady evolution, the occurrence of hot spots is a desired
henomenon. The upper limits of the existence domain of steady
olutions represent in these processes the regime above of which
he reactor becomes uncontrollable and thermal explosion occurs
see e.g. [8]).

Comparing to the classical literature on the conduction regime
f parallel-plane packed bed reactors (see, e.g. [8] and [9]), the
ontribution of the present paper consists of the inclusion in the
athematical model of an organized structure, a stratification of

he reactive granular material, which in turn modulates the rate of
he local volumetric heat generation. In a hardening concrete slab,
.g. the plane-parallel stratification implies a gradual variation of
he water/cement ratio with the transversal coordinate and, conse-
uently, a variation of the heat released by hydration. The effect of
uch type of stratification on the possible steady temperature pro-
les of the packed bed reactors is discussed in the paper in some
etail.
. Basic equations and problem formulation

We consider a packed bed reactor with parallel-plane bound-
ries which are kept at the same constant temperature T0. Be 2L
he distance between the boundaries. The x-axis is perpendicular to

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:magyari@hbt.arch.ethz.ch
mailto:magyari@bluewin.ch
dx.doi.org/10.1016/j.cej.2008.09.005
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Nomenclature

c specific heat (J/kg K)
Ea activation energy (J)
k thermal conductivity (W/m K)
kB Botzmann constant (1.38 × 10−23 J/K)
K integration constant
K* threshold value es of K
K̃∗ dual counterpart of K
L half-thickness of packed bed (m)
q dimensionless wall heat flux
Q rate of volumetric heat generation (W/m3)
Qtot dimensionless rate of total heat release
Qlocal dimensionless rate of local heat release
s stratification parameter
t time variable (s)
T absolute temperature (K)
T0 boundary temperature (K)
W dimensionless function (W = � + sX)
x dimensional transversal coordinate (m)
X dimensionless transversal coordinate (X = x/L)
X0 integration constant

Greek symbols
˛ constant (K−1) ˛ = Ea/(kBT2

0 )
� intensity parameter
� dimensionless structure function of stratification

(� = � es X)
� density (kg/m3)
� dimensionless temperature, � = ˛(T − T0)

Subscripts
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* related to threshold value of K
max related to maximum value of �

he boundaries located at x = −L and x = +L, respectively (see Fig. 1).

he reactor is filled with the mixture of a fine granular material of
hich composition varies with the x-coordinate continuously. We

ssume that in this organized structure an exothermic chemical or
iochemical reaction occurs, such that the rate of the volumetric

ig. 1. Schematic representation of the parallel-plane reactor with coordinate sys-
em, volumetric heat generation Q(X), isothermal boundary conditions T(±L) = T0

nd a typical asymmetric temperature distribution T(x). Due to the stratified struc-
ure of the reactive material in the x-direction, the rate of the volumetric heat
eneration Q(x) depends on the x coordinate explicitly and, in spite of the symmetric
oundary conditions T(±L) = T0, the temperature profiles T(x) are asymmetric with
espect to the midplane of the reactor.
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eat generation is a continuous function both of the local temper-
ture T and the coordinate x. The temperature field T = T(x,t) in this
arallel-plane reactor is governed by the Fourier equation

c
∂T

∂t
= k

∂2T

∂x2
+ Q (x, T) (1)

here Q(x,T) is the rate of volumetric heat generation by the
xothermic reaction and is everywhere positive. We further assume
hat the density �, the specific heat c and the thermal conductivity
of the material are slowly varying functions of the coordinate x

nd of reaction time t, such that all of them may be considered as
onstants.

As it is well known, the heat generated by the exothermic
eaction increases in turn the reaction velocity itself, and thus it
nhances the rate of heat generation continuously (positive feed-
ack). This phenomenon is described by the Arrhenius law, which

mplies that the source term Q(x,T) of Eq. (1) has the form

(x, T) = Q0(x) e−(Ea/kBT) (2)

ere Ea > 0 is the activation energy of the reaction and kB the Boltz-
ann constant. Assuming that the temperature inside the reactor

o not differs substantially from the wall temperature T0, in the
xponential of Eq. (2), 1/T can be expanded in a Taylor series of
he temperature difference T − T0 and, as shown already by Frank-
amenetzkii [9], the first order approximation 1/T ∼= 1/T0 − (T −
0)/T2

0 may be applied. Thus, Eq. (2) becomes

(x, T) = Q̄0(x) e˛(T−T0) (3)

here Q̄0(x) = Q0(x) exp(−Ea/kBT0) > 0 and ˛ = Ea/(kBT2
0 ) > 0.

The thermal evolution of the reactor is determined by the bal-
nce of the heat generated by the exothermic reaction and the
eat extracted through the walls which are kept at the lower tem-
erature T0 (isothermal wall cooling). The latter process depends
bviously on the thermal conductivity and the heat storage capac-
ty of the reacting material. When over the heat outflow process
he heat generation dominates, the temperature of the reactor
ncreases uncontrollably. Accordingly, in the industrial practice one
s interested to reach a time-independent (steady) working regime
f the reactor in which between the generated and extracted heat
ows an exact balance holds. In our present model, the tempera-
ure field T = T(x) of this steady regime is governed by the two-point
oundary value problem

d2T

dx2
+ Q̄0(x) e˛(T−T0) = 0, T(−L) = T(L) = T0 (4)

ow, introducing the dimensionless coordinate X and the dimen-
ionless temperature � by the definitions X = x/L, �(X) = ˛(T − T0), Eq.
4) becomes

d2�

dX2
+ �(X) e� = 0, �(−1) = �(1) = 0 (5)

here the notation �(X) = ˛ L2 Q̄0(x)/k > 0 has been used. The
imensionless function �(X) describes the way in which the struc-
ure of the packed bed is organized with respect to local intensity
¯ 0(x) of the heat generation. In order to be specific, in the present

odel calculations we assume that the structure exhibits a plane-
arallel stratification described by the exponential law

(X) = � es X (6)
ere � and s are the control parameters of our engineering problem.
he intensity parameter � is necessarily positive (exothermic reac-
ions), while the parameter s which characterizes the stratification
f the reacting material in the packed bed, may be positive, negative
r zero. Hence, for a given �, the intensity of the volumetric heat
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Table 1
In the first six rows the coordinates of the threshold points (K*, �*) and of the maxima
(Kmax , �max) of the curves � = �(K; s) plotted in Fig. 2a, as well as the corresponding
values of the integration constant X0 are included. The last two rows refer to the dual
right-branch counterparts (K̃∗, �∗; X̃0,∗) of the (left-branch) threshold points (K*, �*;
X0,*) included in rows 1–3.

s 0 0.7 1 1.5 1.8 2
K* 1 2.01375 2.71828 4.48169 6.04965 7.38906
�* 0 0.435818 0.505311 0.530426 0.510891 0.489117
X0,* 0 1 1 1 1 1
Kmax 3.27672 3.82685 4.44598 6.17899 7.78815 9.17882
� 0.878453 0.832866 0.788743 0.693054 0.627893 0.583216
X
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ources increases or decreases with increasing value of X when the
tratification parameter s is positive or negative, respectively. How-
ver, taking into account that the boundary value problem (5), (6)
s invariant under the transformations (X → −X, s → −s), it is suffi-
ient to consider only the non-negative values of the stratification
arameter s, without any lost of generality. The vanishing value of s
orresponds to �(X) = � = constant, i.e. to a uniform distribution of
he heat sources in the (non-stratified) reactor. This latter case of
he two-point boundary value problem (5) has already been inves-
igated and solved by Frank-Kamenetzkii [9], as well as by Agarwal
nd Loi [10] as a specific example in the context of nth order mul-
ipoint boundary value problems. We also mention here that some
pecial solutions of the problem (5) have been given recently by
oyal [11] which, however, correspond to the case �(x) < 0 and thus
o not apply to our present issue.

. Solution

Changing in Eq. (5), with �(X) is given by Eq. (6), from � to the
ew dependent variable W by the substitution �(X) = W(X) − s X, the
roblems (5) and (6) becomes

d2W

dX2
+ � eW = 0, W(±1) = ±s (7)

ne immediately sees that the first Eq. (7) admits the first integral

dW

dX

)2

= 2�(K − eW ) (8)

here K is a constant of integration. This equation can easily be
ntegrated, yielding

−(W/2) = 1√
K

cosh

[√
�K

2
(X − X0)

]
(9)

here X0 is the second integration constant. On account of
= � + s X, Eq. (9) gives for the (dimensionless) temperature field

he expression

(X) = −ln

(
es X

K
cosh2

[√
�K

2
(X − X0)

])
(10)

he boundary conditions �(−1) = �(1) = 0 yield for the determina-
ion of the integration constants K and X0 in terms of � and s the
ystem of transcendental equations

osh

[√
�K

2
(1 + X0)

]
=

√
K es, cosh

[√
� K

2
(1 − X0)

]
=

√
K e−s

(11)

simple inspection of this system of equations shows that it admits
eal solutions only when, for a given s, K is equal to, or larger than
threshold value K*, namely

≥ K∗ = es (12)

n addition to the temperature field (10), further quantities of phys-
cal and engineering interest are the (dimensionless) heat fluxes
(±1) = −�′(±1) through the plane boundaries of the reactor at
= ±1 (the prime denote differentiation with respect to X), as well

s the (dimensionless) rate of total heat release by the exothermic
eactions

tot =
∫ 1

−1

(� esX+�) dX (13)

z
a

�

max

0,max 0 0.330829 0.448318 0.602272 0.671772 0.710162
˜∗ ∞ 23.3089 17.4406 15.2799 16.0226 17.1377
˜0∗ 0 0.159063 0.246800 0.392276 0.471786 0.520005

earing in mind Eqs. (10) and (11), one obtains for the above quan-
ities the expressions

(−1) = s −
√

2�(K − e−s), q(1) = s +
√

2�(K − es), (14)

tot =
√

2�
(√

K − es +
√

K − e−s
)

(15)

bviously, Qtot = q(1) −q (−1), in full agreement with our physical
xpectation and the integral of the energy balance Eq. (5) with
espect to X from −1 to 1.

. Discussion

The basic task is now to determine the real solutions (K,X0) of
he system of Eq. (11) for specified values of the control parameters
≥ 0 and � > 0. Unfortunately, the system (11) does not admit an
xplicit solution for K and X0, but only for � and X0 in terms of s and
which reads

= 1
2K

(
arccosh

√
K es + arccosh

√
K e−s

)2
(16)

0 = arccosh
√

K es − arccosh
√

K e−s

arccosh
√

K es + arccosh
√

K e−s
(17)

here arccosh(z) = ln
(

z +
√

z2 − 1
)

.

The values of � and X0 corresponding to the threshold value (12)
f K are

�∗ = 0 and X∗
0 = 0 for s = 0, �∗ = 1

2
e−s arccosh2 es and

X∗
0 = 1 for s /= 0 (18)

n Fig. 2a and b, � and X0 given by Eqs. (16) and (17) are plotted
s functions of K for the values s = 0, 0.7, 1, 1.5, 1.8 and 2 of the
tratification parameter. The dots mark in these figures the val-
es of �∗ and X∗

0 given by Eq. (18), and the dotted curve of Fig. 2a
epresents the envelope

∗ = 1
2K∗

arccosh2 K∗ (19)

f the threshold points (K*, �) in the plane (K, �). The maxi-
um of the envelope (19) is (�∗)max = 0.532222, being reached at

* = 4.00737, i.e. at the value s = ln(4.00737) = 1.38814 of the strati-
cation parameter. The threshold values (K*, �*; X0*), as well as the
alues (Kmax, �max; X0max) associated with the maxima of the curves
= �(K;s) of Fig. 2a are collected in the first six rows of Table 1. As

uggested by Fig. 2a and b, all three functions �, �* and X0 approach

ero as K → ∞. More precisely, to the leading order, the following
symptotic behaviors hold

∼ ln2(4K)
2K

, �∗ ∼ ln2(2K)
2K

, X0 ∼ s

ln(4K)
as K → ∞ (20)
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Fig. 2. (a) The solid curves show of the intensity parameter � as a function of the
integration constant K for six specified values of the stratification parameter s (see
also Table 1). The dotted curve represents the envelope of the points corresponding
to the threshold values K* = es of K. The maximum of the envelope (�*)max = 0.532222
is reached at K* = 4.00737. (b) Plot of X0 as a function of K according to Eq. (17),
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solution associated with the value �4 = 0.4 < �* of the intensity
parameter, the corresponding K and X0 values being K4 = 27.1034
and X0,4 = 0.219622, respectively. It is clearly seen that all these tem-
perature profiles are non-symmetric with respect to the midplane.
Fig. 4 also shows that the left-branch solutions describe low tem-
or six specified values of the stratification parameter s. The dots mark the values
0 = 0 and X0 = 1 corresponding to the threshold values K* = es of K for s = 0 and s /= 0,
espectively, according to Eq. (18).

The main message of Fig. 2a is that for any given value s ≥ 0 of the
tratification parameter, a maximum value �max(s) of the intensity
arameter � exists such that above of this upper bound no steady
emperature solutions are possible. The domain of existence of the
olutions is the finite �-range

< � ≤ �max(s) for all s ≥ 0 (21)

nd consists of a left- and a right-branch of the curve �, which match
t � = �max(s). The maximum of � corresponding to s = 0 represents
he absolute maximum of all the �-cures

max(0) > �max(s) for all s > 0 (22)

As recognized already by Frank-Kamenetskii [9] and by Agar-
al and Loi [10], in the case of homogeneous reactor (s = 0), for

very given value of � in the range 0 < � < �max(0) two indepen-
ent solutions (dual solutions) exist which become coincident as
→ �max(0). These solutions correspond according to Eqs. (17) and

16) to the same value X0 = 0 of the integration constant X0 (see
ig. 2b), but to two different values K and K > K of the constant
1 2 1
, which are obtained as solutions of the transcendental equation

= 2
K

arccosh2√
K, 0 < � < �max(0), (23) F

t
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he corresponding left-branch (“1”) and right-branch (“2”) temper-
ture solutions (10)

1,2(X) = −2 ln

[
cosh

(
X arcosh

√
K1,2
)

√
K1,2

]
(s = 0) (24)

re symmetric with respect to the midplane X = 0 of the reactor.
Although the domain of existence of the steady solutions given

y Eq. (21) is formally the same for both s = 0 and s /= 0, in the later
ase of the stratified reactor an essential new feature occurs. Indeed,
n the range between � = 0 and the �-value (19) corresponding to
he threshold value (12) of K,

< � < �∗ = e−s

2
arccosh2(es) (s /= 0) (25)

he steady temperature solution (10) for the stratified reactor is
lways unique, while in the case s = 0, no unique solutions exist at
ll (except for the coincident solutions at � = �max(0)). Then, in the
ange �* ≤� ≤ �max(s) dual left- and right-branch solutions occur
hich also become coincident as � → �max(s).

Concerning the dual solutions, between the cases s = 0 and s /= 0
n essential deviation is encountered again. While in the case
= 0, the constant of integration X0 is vanishing for all �-values in
he range (21) (which implies that for s = 0 all the dual solutions
re symmetric with respect to the midplane X = 0 of the reactor),
n the case s /= 0 the dual solutions are always non-symmetric,
eing associated with different non-vanishing values of X0 (see also
able 1). To be more specific in discussing the features of the solu-
ion space in the case of stratified reactor, let us inspect Fig. 3, where
he �-curve of Fig. 2a corresponding to s = 1 of has been picked out
s a representative example for all cases with s /= 0.

The dual left- and right-branch solutions are obtained in this
ase in the interval 0.505311 ≤ � ≤ 0.788743, while the unique
ight-branch solutions from the �-range 0 < � < 0.505311 emerge.
n Fig. 4, four temperature profiles (10) related to Fig. 3 are shown.
1 and �2 are the dual left- and right-branch solutions associated
ith the threshold point (K*, �*; X0,*) and with its counterpart

K̃∗, �∗; X̃0,∗) corresponding to the same � = �*, respectively (see also
able 1). �3 represents the coincident dual solutions correspond-
ng to the maximum (Kmax, �max; X0,max) of the �-curve of Fig. 3,
nd the temperature profile �4 represents the unique right-branch
ig. 3. Existence domain of the steady solutions (10) for s = 1, as a representative for
he reactor with stratified structure, s /= 0.
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Fig. 4. Four steady temperature profiles related to Fig. 3. �1 and �2 are the dual left-
and right-branch solutions associated with the (left-branch) threshold point (K*,
�*; X0,*) and its right-branch counterpart (K̃∗, �∗; X̃0,∗) corresponding to the same
� = �*, respectively. �3 represents the coincident dual solutions corresponding to
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Fig. 5. Left-branch temperature profiles plotted as functions of X for the same
value � = 0.55 of the intensity parameter and six different values of the stratifica-
tion parameter s. The maxima �max , marked by dots, and the other characteristic
values associated with these temperature distributions are collected in Table 3.

Table 3
Characteristic values of the left-branch temperature profiles � shown in Fig. 5.

s 0 0.7 1 1.5 1.8 2
K 1.45720 2.07140 2.73299 4.48918 6.11218 7.68656
X0 0 0.776877 0.915206 0.963221 0.921716 0.862898
Xmax 0 0.111672 0.156703 0.225303 0.261467 0.282535
� 0.376518 0.40792 0.444278 0.555568 0.682058 0.833695
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Fig. 5 and Table 3 show that for the left-branch solutions con-
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he maximum (Kmax , �max; X0,max) and the temperature profile �4 represents the
nique right-branch solution associated with the value �4 = 0.4 < �* of the intensity
arameter The dots marks the maxima of the profiles � (see also Table 2).

erature and the right-branch solutions, high-temperature regimes
hot spots) of the exothermic reactions, respectively. The abscissa
max of the maxima, and the maxima �max of the temperature pro-
les (10) are given by

max = X0 −
√

2
�K

arctanh
(

s√
2�K

)
, (26)

max = ln K + ln

(
1 − s2

2�K

)
− s Xmax (27)

or the homogeneous reactor, Eqs. (26) and (27) reduce to

max = 0, �max = ln K (s = 0) (28)

hus, for the stratified reactor (s /= 0) the value of Xmax is a mea-
ure of the deviation of temperature profile from the symmetric
hape corresponding to the homogeneous structure.The charac-
eristic values �, K, X0, Xmax, �max and Qtot of the temperature
istributions shown in Fig. 4 are collected in Table 2. Already a
imple inspection of Table 2 suggests that the increasing values of
he temperature maxima are correlated with increasing values of
. Thus, the rate of heat generation Qtot increases with increasing
alues of �max. At the same time, both X0 and Xmax decrease with
ncreasing values of �max. For K � 1 all these features can also be
roved analytically. Indeed, bearing in mind the third Eq. (20) and
xpanding Eqs. (26) and (27) for large values of K, we obtain to the

eading order the simple expressions

max = s

ln(4K)
, �max = ln K (K � 1) (29)

s
X
s
h

able 2
haracteristic values of the four temperature profiles � corresponding to s = 1 and shown in
axima �max (the bottom-up sequence in Fig. 4).

� K X0 Xmax

1 0.50531 2.71828 1 0.15729
3 0.78874 4.44598 0.44832 0.14831
2 0.50531 17.4406 0.24680 0.13111
4 0.4 27.1034 0.21962 0.12592
max

(1) 0.70917 0.951821 1.12723 1.59076 2.06227 2.57206
tot 1.41834 1.56799 1.74019 2.25701 2.81992 3.45413
local,max 0.801461 1.13927 1.50315 2.46905 3.36169 4.22761

hich prove the above statement. To the order 1/K, the more accu-
ate approximation formulas

max = s

ln(4K)
− s

�K
(K � 1) (30)

nd

max = ln K − s2

ln(4K)
+ s2

2�K
(K � 1) (31)

esult. For the high temperature profiles �2 and �4 of Fig. 4, e.g. Eq.
31) approximates the corresponding exact results of Table 2 with
n accuracy of 0.4% and 0.2%, respectively.

All the temperature profiles shown in Fig. 4 correspond to the
ame value s = 1 of the stratification parameter. In odder to illus-
rate the dependence of the steady temperature distributions on the
arameter s, in Fig. 5 the left-branch temperature profiles have been
lotted as functions of X for the same value � = 0.55 of the inten-
ity parameter and the six different values of s considered in Fig. 2a
nd b. The characteristic values associated with these temperature
istributions are collected in Table 3.
idered, both the maximum temperature �max and its coordinate
max increase with increasing values of the stratification parameter
. Similarly, the rate of total reaction heat release Qtot, as well as the
eat flux q(1) increase with increasing values of s, in full agreement

Fig. 4. The functions � are listed in table according to the increasing values of their

�max Qtot Note

0.39013 1.54122 Dual solution to �2

1.18986 4.18725 Coincident dual solutions at � = �max

2.66929 8.0111 Dual solution to �1

3.12652 9.04156 Unique solution
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as long as the thermal diffusion is the governing internal heat
ig. 6. The rate of local reaction heat release Qlocal(X) plotted as function of X the
eft-branch temperature profiles shown in Fig. 5. The dots mark the maximum values

local,max included in the last row of Table 3.

ith our physical expectation. It is also instructive to calculate, in
ddition to Qtot, the rate of the local reaction heat release Qlocal(X),
hich represents the integrand in Eq. (13) of Qtot, i.e.

local(X) = � esX+�(X) (32)

earing in mind Eq. (10), one easily obtains for Qlocal the explicit
xpression

local(X) = �K

cosh2[
√

(�K/2)(X − X0)]
(33)

ne immediately sees that Qlocal(X) reaches at X = X0 its maximum
alue

local,max = �K (X = X0) (34)

he values of Qlocal,max are included in the last row of Table 3 and
local(X) given by Eq. (33) is plotted for � = 0.55 and s = 0, 0.7, 1, 1.5,
.8 and 2 in Fig. 6.

Comparing Figs. 5 and 6 one sees that the coordinate Xmax of
max coincides with the coordinate X0 of Qlocal,max only for the
on-stratified reactor (s = 0), in which case Xmax = X0 = 0, and both

unctions �(X) and Qlocal(X) are symmetric with respect to the mid-
lane X = 0. In the stratified reactor however, both these symmetries
et broken, i.e. Xmax /= 0 and X0 /= 0. Moreover, X0 is shifted with
espect to Xmax to the right (se also Table 3). Indeed, according to
q. (26) one has

0 − Xmax =
√

2
�K

arctanh
(

s√
2�K

)
> 0 for s > 0 (35)

In other words, as an effect of stratification (s /= 0), the max-
mum of the steady temperature profiles (10) is “retarded” with
espect to the maximum of the rate Qlocal(X) of local heat release
y exothermic reactions. This (nonlinear) effect becomes manifest
lready by a simple inspection of Eq. (32).

. Summary and conclusions

The steady conduction regime of a parallel-plane packed bed
eactor with a stratified structure and internal volumetric heat

eneration by exothermic reactions has been investigated. The
pproach was based on an exactly solvable one-dimensional non-
inear mathematical model which involves two experimentally
ccessible control parameters, the intensity parameter � and strat-
fication parameter s. From engineering point of view, this model

t
r
t
t
t
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orresponds to a three dimensional reactor whose y- and z-
imensions are much larger than the x dimension, i.e. than the
istance 2L between the two plane boundaries (Fig. 1). In this case
he finite-size effects in y- and z-directions of the real reactor can be
eglected, and the results of the (mathematically) one-dimensional
odel calculations hold in the three dimensional world as well.

he intensity parameter � is an intrinsic material constant which
s determined by the reaction heat. The stratification parameter

is rather a geometrical characteristic which is determined by
he way in which the structure of the reacting materials has been
rganized between the plane boundaries. Since the problem pos-
esses a natural left–right symmetry, the positive and negative
alues of s are trivially equivalent. The stratification factor es X

ncreases/decreases from the lower to the upper boundary mono-
onically when s is positive/negative (Fig. 1). The central issue of
he paper was to investigate the effect of the organized structure of
he reactive granular material on the heat release by the exother-

ic reactions and on the possible steady temperature distributions
hen the boundaries of the reactor are kept at the same constant

emperature. The main results of the paper can be summarized as
ollows.

1. For every given value of the stratification parameter s ≥ 0, an
upper bound �max(s) of the intensity parameter has been found,
such that above of this maximum value of � no steady tem-
perature solution exists, i.e. the reactor becomes thermally
uncontrollable. The absolute maximum of � is obtained for s = 0,
i.e. �max(0) > �max(s) for all s > 0.

. While in the homogeneous (non-stratified) reactor, below �max

only dual solutions exist, in the stratified structure (s > 0) both
unique and dual solutions are possible. The unique solutions
always describe high temperature steady states (hot spots) of
the reactor, while the dual solution branches are associated with
low and high temperature reaction regimes, respectively.

. Whereas in the homogeneous reactor the steady temperature
filed �(X) as well as the rate of local heat release Qlocal(X) always
are symmetric functions with respect to the midplane X = 0, in
the stratified case the symmetries of both these functions get
broken (see Figs. 5 and 6). The maximum of the asymmetric
temperature profiles is shifted (for positive s) toward the upper
boundary. This feature is due to the fact that with increasing val-
ues of X, the stratification factor es X of the source term increases,
too. On this reason the asymmetry of the temperature profiles is
physically expected. However, it is quite surprising that the local
reaction heat release Qlocal(X) plotted in Fig. 6 does not increase
everywhere, but possesses a maximum in the neighborhood of
the upper boundary. This is not obvious from the very begin-
ning since it is the joint effect of the boundary conditions on
the one hand, and of a subtle nonlinear interplay of the explicit
X-dependence via es X and of the implicit X-dependence via �(X)
present in the expression Qlocal(X) = �es X+�(X) of the local reaction
heat release, on the other hand.

We may conclude that the stratification exerts a substantial
nfluence on the steady conduction regime of the reactor. This
ircumstance has important consequences for all the practical
pplications of the model. Moreover, the range of validity of the
bove model calculations extends also to the case of fluidized beds
ransfer phenomenon compared to the convection. Since in this
egime of the fluidized beds no convective instabilities can occur,
he investigation of a possible crossover between the low and high
emperature conduction regimes under the influence of small per-
urbations is a challenging research objective.
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