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ABSTRACT

The steady conduction regime of exothermic chemical reactions in a packed bed reactor is investigated
analytically. A plane-parallel stratification of the reactive granular material is assumed which modulates
the rate of the local volumetric heat generation in the reactor. The approach is based on an exactly solvable
nonlinear mathematical model which involves two experimentally accessible control parameters, the
intensity parameter A >0 and stratification parameter s > 0, respectively. In terms of these parameters, the
existence domain of the steady temperature solutions and the occurrence of hot spots are discussed. For
a given value of the stratification parameter, an upper bound Apqx(s) of the intensity parameter has been
found, such that above of this maximum value of A the reactor becomes thermally uncontrollable. Below
Amax(8), unique as well as dual solutions exist. The former ones describe high temperature steady states
of the reactor, while the dual solution branches are associated with low and high temperature reaction
regimes, respectively. The features of the corresponding temperature distributions are examined in detail.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

The present paper is concerned with parallel-plane packed bed
reactors having a stratified structure in the transversal direction,
and an internal volumetric heat generation by exothermic reactions.
Model calculations are reported which apply to the steady conduc-
tion regime of such reactors, encountered in the chemical process
engineering, in civil engineering, combustion engineering, thermal
explosion control and environmental energy engineering. Specific
examples in these fields are the ethanol production from cereals
in anaerobic fermenters, hardening of the cement paste of massive
concrete members, burning of granular fuels, thermal explosion
o fine powders, degradation of organic waste materials in aerobic
reactors and natural landfills, etc. Since the temperature and heat
transfer control belong to the most important factors in all these
processes, a special attention is given in the paper to the occurrence
of hot spots [1] and to the upper bounds of the existence domain
of steady solutions, [2]. The hot spots due to the excessive fermen-
tation heat generation may decelerate the reaction by killing the
yeast in the fermenter (see, e.g. [3]). During the hardening of mas-
sive concrete slabs, the hot spots due to the hydration heat release
may lead to early-age thermal stresses. This may cause cracking,
which in turn reduces the durability of highly expensive structures,
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[4-6]. Inrapid-hardening cement-based fiber composites, e.g. adia-
batic temperature maxima up to 140 °C have been measured, [7]. In
combustion processes of fine granular materials, by contrast, where
the overrunning of the ignition temperature is a necessary condi-
tion of the steady evolution, the occurrence of hot spots is a desired
phenomenon. The upper limits of the existence domain of steady
solutions represent in these processes the regime above of which
the reactor becomes uncontrollable and thermal explosion occurs
(see e.g. [8]).

Comparing to the classical literature on the conduction regime
of parallel-plane packed bed reactors (see, e.g. [8] and [9]), the
contribution of the present paper consists of the inclusion in the
mathematical model of an organized structure, a stratification of
the reactive granular material, which in turn modulates the rate of
the local volumetric heat generation. In a hardening concrete slab,
e.g. the plane-parallel stratification implies a gradual variation of
the water/cement ratio with the transversal coordinate and, conse-
quently, a variation of the heat released by hydration. The effect of
such type of stratification on the possible steady temperature pro-
files of the packed bed reactors is discussed in the paper in some
detail.

2. Basic equations and problem formulation

We consider a packed bed reactor with parallel-plane bound-
aries which are kept at the same constant temperature Ty. Be 2L
the distance between the boundaries. The x-axis is perpendicular to
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Nomenclature

c specific heat (J/kg K)

Eq activation energy (J)

k thermal conductivity (W/mK)

kg Botzmann constant (1.38 x 10-23 J/K)

K integration constant

K-« threshold value e of K

K, dual counterpart of K

L half-thickness of packed bed (m)

q dimensionless wall heat flux

Q rate of volumetric heat generation (W/m?3)

Qtot dimensionless rate of total heat release

Qjocal dimensionless rate of local heat release

S stratification parameter

t time variable (s)

T absolute temperature (K)

Ty boundary temperature (K)

w dimensionless function (W =6 +sX)

X dimensional transversal coordinate (m)

X dimensionless transversal coordinate (X=x/L)

Xo integration constant

Greek symbols

o constant (K™1) o = Ea /(kgT3)

A intensity parameter

A dimensionless structure function of stratification
(A=xresX)

o density (kg/m?3)

0 dimensionless temperature, 8 =&(T — Ty)

Subscripts

* related to threshold value of K

max related to maximum value of A

the boundaries located at x=—L and x=+L, respectively (see Fig. 1).
The reactor is filled with the mixture of a fine granular material of
which composition varies with the x-coordinate continuously. We
assume that in this organized structure an exothermic chemical or
biochemical reaction occurs, such that the rate of the volumetric

+1L

I(x)

-L T(-L)=T,

Fig. 1. Schematic representation of the parallel-plane reactor with coordinate sys-
tem, volumetric heat generation Q(X), isothermal boundary conditions T(£L)=To
and a typical asymmetric temperature distribution T(x). Due to the stratified struc-
ture of the reactive material in the x-direction, the rate of the volumetric heat
generation Q(x) depends on the x coordinate explicitly and, in spite of the symmetric
boundary conditions T(+L) =Ty, the temperature profiles T(x) are asymmetric with
respect to the midplane of the reactor.

heat generation is a continuous function both of the local temper-
ature T and the coordinate x. The temperature field T=T(x,t) in this
parallel-plane reactor is governed by the Fourier equation

aT 2T
,OCE :kw"rQ(Xv T) (1)

where Q(x,T) is the rate of volumetric heat generation by the
exothermic reaction and is everywhere positive. We further assume
that the density p, the specific heat c and the thermal conductivity
k of the material are slowly varying functions of the coordinate x
and of reaction time t, such that all of them may be considered as
constants.

As it is well known, the heat generated by the exothermic
reaction increases in turn the reaction velocity itself, and thus it
enhances the rate of heat generation continuously (positive feed-
back). This phenomenon is described by the Arrhenius law, which
implies that the source term Q(x,T) of Eq. (1) has the form

Q(X, T) = QO(X) e*(Ea/kBT) (2)

Here E; > 0 is the activation energy of the reaction and kg the Boltz-
mann constant. Assuming that the temperature inside the reactor
do not differs substantially from the wall temperature Ty, in the
exponential of Eq. (2), 1/T can be expanded in a Taylor series of
the temperature difference T— Ty and, as shown already by Frank-
Kamenetzkii [9], the first order approximation 1/T = 1/To — (T —
To)/Tg may be applied. Thus, Eq. (2) becomes

Qx, T) = Qo(x) e*T~T0) (3)

where Qo(x) = Qo(x) exp(—Eq/kgTo) > 0 and o = Eq/(kgT2) > 0.

The thermal evolution of the reactor is determined by the bal-
ance of the heat generated by the exothermic reaction and the
heat extracted through the walls which are kept at the lower tem-
perature Ty (isothermal wall cooling). The latter process depends
obviously on the thermal conductivity and the heat storage capac-
ity of the reacting material. When over the heat outflow process
the heat generation dominates, the temperature of the reactor
increases uncontrollably. Accordingly, in the industrial practice one
is interested to reach a time-independent (steady) working regime
of the reactor in which between the generated and extracted heat
flows an exact balance holds. In our present model, the tempera-
ture field T=T(x) of this steady regime is governed by the two-point
boundary value problem

d’t

ke
<dx2+

Q(x) e*TTo) =0, T(-L)=T(L)=To (4)
Now, introducing the dimensionless coordinate X and the dimen-
sionless temperature 6 by the definitions X=x/L, O(X) = «(T — Tp), Eq.
(4) becomes

d?6 p

2 + A(X) e” =0,
where the notation A(X)=a L2 Qu(x)/k > 0 has been used. The
dimensionless function A(X) describes the way in which the struc-
ture of the packed bed is organized with respect to local intensity
Qo(x) of the heat generation. In order to be specific, in the present
model calculations we assume that the structure exhibits a plane-
parallel stratification described by the exponential law

AX) =) X (6)

0(-1)=6(1)=0 (5)

Here A and s are the control parameters of our engineering problem.
The intensity parameter A is necessarily positive (exothermic reac-
tions), while the parameter s which characterizes the stratification
of the reacting material in the packed bed, may be positive, negative
or zero. Hence, for a given A, the intensity of the volumetric heat
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sources increases or decreases with increasing value of X when the
stratification parameter s is positive or negative, respectively. How-
ever, taking into account that the boundary value problem (5), (6)
is invariant under the transformations (X — —X, s — —s), it is suffi-
cient to consider only the non-negative values of the stratification
parameter s, without any lost of generality. The vanishing value of s
corresponds to A(X)=A =constant, i.e. to a uniform distribution of
the heat sources in the (non-stratified) reactor. This latter case of
the two-point boundary value problem (5) has already been inves-
tigated and solved by Frank-Kamenetzkii [9], as well as by Agarwal
and Loi [10] as a specific example in the context of nth order mul-
tipoint boundary value problems. We also mention here that some
special solutions of the problem (5) have been given recently by
Goyal [11] which, however, correspond to the case A(x)<0 and thus
do not apply to our present issue.

3. Solution

Changing in Eq. (5), with A(X) is given by Eq. (6), from 6 to the
new dependent variable W by the substitution 8(X)=W(X) — s X, the
problems (5) and (6) becomes

d*w

S reV =0, W(£1) = +s (7)

One immediately sees that the first Eq. (7) admits the first integral
2

(iﬁw) — 20K — W) (8)

where K is a constant of integration. This equation can easily be
integrated, yielding

e—(W/2) _ % cosh [\/?(X —Xo)‘| ©

where X, is the second integration constant. On account of
W=0+sX, Eq. (9) gives for the (dimensionless) temperature field
the expression

6(X) = —In (ej(x cosh? [, / AZK(X_XO)D (10)

The boundary conditions 6(—1)=6(1)=0 yield for the determina-
tion of the integration constants K and Xy in terms of A and s the
system of transcendental equations

cosh [1 / %(l +XO)] =+/Kes, cosh [ %(l XO)] =+Ke=s

(11)

Asimple inspection of this system of equations shows that it admits
real solutions only when, for a given s, K is equal to, or larger than
a threshold value K+, namely

K=K =¢ (12)

In addition to the temperature field (10), further quantities of phys-
ical and engineering interest are the (dimensionless) heat fluxes
q(£1)=-0'(£1) through the plane boundaries of the reactor at
X =41 (the prime denote differentiation with respect to X), as well
as the (dimensionless) rate of total heat release by the exothermic
reactions

1
Qtot =/ (1 eX+9)dx (13)

1

Table 1

In the first six rows the coordinates of the threshold points (K-, A-) and of the maxima
(Kmax, Amax) of the curves A = A(K; s) plotted in Fig. 2a, as well as the corresponding
values of the integration constant Xp are included. The last two rows refer to the dual
right-branch counterparts (K., A.; Xo..) of the (left-branch) threshold points (K-, A+;
Xp+) included in rows 1-3.

s 0 0.7 1 15 18 2

K- 1 2.01375 2.71828 4.48169 6.04965 7.38906
As 0 0.435818 0.505311  0.530426 0.510891  0.489117
Xo 0 1 1 1 1 1

Kinax 3.27672 3.82685 4.44598 6.17899 7.78815 9.17882
Amax 0.878453  0.832866  0.788743  0.693054 0.627893  0.583216
Xomax 0O 0.330829 0.448318  0.602272  0.671772  0.710162
K. 00 23.3089 17.4406 15.2799 16.0226 17.1377
Xox 0 0.159063  0.246800 0.392276  0.471786  0.520005

Bearing in mind Eqgs. (10) and (11), one obtains for the above quan-
tities the expressions

g(=1)=s—+/2A(K —e=5), q(1)=s+
Qot:ﬁ(\/l(—e5+\/K—e—s) (15)

Obviously, Qrr=q(1)—q(—1), in full agreement with our physical
expectation and the integral of the energy balance Eq. (5) with
respect to X from —1 to 1.

20(K — ), (14)

4. Discussion

The basic task is now to determine the real solutions (K,Xg) of
the system of Eq. (11) for specified values of the control parameters
s>0 and A >0. Unfortunately, the system (11) does not admit an
explicit solution for K and Xy, but only for A and X; in terms of s and
K which reads

A= % (arccosth es + arccoshvK e*s)2 (16)

X — arccosh+/K eS — arccoshvK e~
0 arccosh+/K es + arccoshv/K e=S

where arccosh(z) = In (z +/22 - 1)

The values of A and X, corresponding to the threshold value (12)
of K are

(17)

A=0 and X;=0 fors=0, Ay = %e‘s arccosh? ¢ and

X;g=1 fors+0 (18)

In Fig. 2a and b, A and X; given by Eqgs. (16) and (17) are plotted
as functions of K for the values s=0, 0.7, 1, 1.5, 1.8 and 2 of the
stratification parameter. The dots mark in these figures the val-
ues of A, and Xj given by Eq. (18), and the dotted curve of Fig. 2a
represents the envelope

arccosh® K, (19)

1
Ao = 2K,

of the threshold points (K+, A) in the plane (K, A). The maxi-
mum of the envelope (19) is (A4)pmax = 0.532222, being reached at
K+=4.00737, i.e. at the value s=1n(4.00737)=1.38814 of the strati-
fication parameter. The threshold values (K«, A+; Xy+), as well as the
values (Kmax, Amax; Xomax ) associated with the maxima of the curves
A =A(K;s) of Fig. 2a are collected in the first six rows of Table 1. As
suggested by Fig. 2a and b, all three functions A, A~ and Xy approach
zero as K— oco. More precisely, to the leading order, the following
asymptotic behaviors hold

_ In%(4K) _ In%(2K) s

2K 2K 707 In(4K)

A Ay as K — oo (20)
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Fig. 2. (a) The solid curves show of the intensity parameter A as a function of the
integration constant K for six specified values of the stratification parameter s (see
also Table 1). The dotted curve represents the envelope of the points corresponding
to the threshold values K: = e* of K. The maximum of the envelope (A+ )max =0.532222
is reached at K-=4.00737. (b) Plot of Xy as a function of K according to Eq. (17),
for six specified values of the stratification parameter s. The dots mark the values
Xo=0and Xp =1 corresponding to the threshold values K- =e* of Kfors=0and s # 0,
respectively, according to Eq. (18).

The main message of Fig. 2a is that for any given value s > 0 of the
stratification parameter, a maximum value Apqx(s) of the intensity
parameter A exists such that above of this upper bound no steady
temperature solutions are possible. The domain of existence of the
solutions is the finite A-range

0 <A < Amax(s) forall s>0 (21)

and consists of a left- and a right-branch of the curve A, which match
at A = Amax(s). The maximum of A corresponding to s =0 represents
the absolute maximum of all the A-cures

Amax(0) > Amax(s) for all s >0 (22)

As recognized already by Frank-Kamenetskii [9] and by Agar-
wal and Loi [10], in the case of homogeneous reactor (s=0), for
every given value of A in the range 0<\ <Anqx(0) two indepen-
dent solutions (dual solutions) exist which become coincident as
A — Amax(0). These solutions correspond according to Eqs. (17) and
(16) to the same value Xy =0 of the integration constant X, (see
Fig. 2b), but to two different values K; and K, > K; of the constant
K, which are obtained as solutions of the transcendental equation

A= %arccoshzﬁ, 0 <A < Amax(0), (23)

The corresponding left-branch (“1”) and right-branch (“2”) temper-
ature solutions (10)

cosh (X arcosh /K 2)
01,2(X)=-21In X (s=0) (24)
1,2

s

are symmetric with respect to the midplane X =0 of the reactor.

Although the domain of existence of the steady solutions given
by Eq. (21) is formally the same for boths=0and s # 0, in the later
case of the stratified reactor an essential new feature occurs. Indeed,
in the range between A =0 and the A-value (19) corresponding to
the threshold value (12) of K,

e—S
O<A<Ai= 5
the steady temperature solution (10) for the stratified reactor is
always unique, while in the case s=0, no unique solutions exist at
all (except for the coincident solutions at A = A;gx(0)). Then, in the
range A- <A <Amax(s) dual left- and right-branch solutions occur
which also become coincident as A — Amgx(S).

Concerning the dual solutions, between the casess=0ands # 0
an essential deviation is encountered again. While in the case
s=0, the constant of integration X; is vanishing for all A-values in
the range (21) (which implies that for s=0 all the dual solutions
are symmetric with respect to the midplane X=0 of the reactor),
in the case s # 0 the dual solutions are always non-symmetric,
being associated with different non-vanishing values of Xy (see also
Table 1). To be more specific in discussing the features of the solu-
tion space in the case of stratified reactor, let us inspect Fig. 3, where
the A-curve of Fig. 2a corresponding to s=1 of has been picked out
as a representative example for all cases with's # 0.

The dual left- and right-branch solutions are obtained in this
case in the interval 0.505311 <\ <0.788743, while the unique
right-branch solutions from the A-range 0<X <0.505311 emerge.
In Fig. 4, four temperature profiles (10) related to Fig. 3 are shown.
01 and 6, are the dual left- and right-branch solutions associated
with the threshold point (K, A+; Xp+) and with its counterpart
(K., As; Xo,.) corresponding to the same A = A-, respectively (see also
Table 1). 63 represents the coincident dual solutions correspond-
ing to the maximum (Kmnax, Amax; Xomax) Of the A-curve of Fig. 3,
and the temperature profile 8, represents the unique right-branch
solution associated with the value A4=0.4<A- of the intensity
parameter, the corresponding K and Xy values being K, =27.1034
and Xp 4 =0.219622, respectively. Itis clearly seen that all these tem-
perature profiles are non-symmetric with respect to the midplane.
Fig. 4 also shows that the left-branch solutions describe low tem-

arccosh?(e’) (s +0) (25)

osl "\, =0.788743, K, =444598, X, =0.448518 i

0.6F
i A=A, =0505311

0.2 B

k.

0.0|% K.=2.71828, X,. =1 K. =17.4406, X, =0.2468
\

5 10 15 20 25
K

Fig. 3. Existence domain of the steady solutions (10) for s=1, as a representative for
the reactor with stratified structure, s # 0.
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-1.0 -05 0.0 0.5 1.0
X

Fig. 4. Four steady temperature profiles related to Fig. 3. #; and 6 are the dual left-
and right-branch solutions associated with the (left-branch) threshold point (K-,
A+; Xo+) and its right-branch counterpart (K,, A.; Xo..) corresponding to the same
)=\, respectively. 65 represents the coincident dual solutions corresponding to
the maximum (Kinax, Amax; Xomax) and the temperature profile 64 represents the
unique right-branch solution associated with the value A4 =0.4 < A+ of the intensity
parameter The dots marks the maxima of the profiles 6 (see also Table 2).

perature and the right-branch solutions, high-temperature regimes
(hot spots) of the exothermic reactions, respectively. The abscissa
Xmax of the maxima, and the maxima 0 g of the temperature pro-
files (10) are given by

2 S
Xmax =Xo — | [ 77 arctanh (W) , (26)

2
Omax = InK + In (1 - M) — S Xmax (27)

For the homogeneous reactor, Eqs. (26) and (27) reduce to

Xmax = 0, Bmax =In K (S = 0) (28)
Thus, for the stratified reactor (s # 0) the value of X« is @ mea-
sure of the deviation of temperature profile from the symmetric
shape corresponding to the homogeneous structure.The charac-
teristic values A, K, Xo, Xmax» Omax and Qo of the temperature
distributions shown in Fig. 4 are collected in Table 2. Already a
simple inspection of Table 2 suggests that the increasing values of
the temperature maxima are correlated with increasing values of
K. Thus, the rate of heat generation Qo increases with increasing
values of Omqx. At the same time, both Xy and Xngx decrease with
increasing values of Opax. For K> 1 all these features can also be
proved analytically. Indeed, bearing in mind the third Eq. (20) and
expanding Eqs. (26) and (27) for large values of K, we obtain to the
leading order the simple expressions

N

Xmax = m, gmax =InK

(K>1) (29)

Table 2

§=0,07 115 18 2

-1.0 -05 0.0 0.5 1.0
X

Fig. 5. Left-branch temperature profiles plotted as functions of X for the same
value A =0.55 of the intensity parameter and six different values of the stratifica-
tion parameter s. The maxima 64y, marked by dots, and the other characteristic
values associated with these temperature distributions are collected in Table 3.

Table 3

Characteristic values of the left-branch temperature profiles 6 shown in Fig. 5.

s 0 0.7 1 1.5 1.8 2

K 1.45720 2.07140 2.73299 4.48918 6.11218 7.68656
Xo 0 0.776877 0.915206 0.963221 0.921716  0.862898
Ximax 0 0.111672  0.156703  0.225303 0.261467 0.282535
Omax 0.376518  0.40792 0.444278 0.555568 0.682058 0.833695
q(1) 0.70917 0.951821  1.12723 159076 2.06227 2.57206
Qrot 1.41834 156799 1.74019 2.25701 2.81992 3.45413
Quocatmax ~ 0.801461 113927 1.50315 2.46905 3.36169 4.22761

which prove the above statement. To the order 1/K, the more accu-
rate approximation formulas

S s
Xmax = n(@K) ~ 7K (K>1) (30)
and
52 52
Omax = InK — +=— (K>1) (31)

In(4K) ~ 2AK

result. For the high temperature profiles 8, and 6, of Fig. 4, e.g. Eq.
(31) approximates the corresponding exact results of Table 2 with
an accuracy of 0.4% and 0.2%, respectively.

All the temperature profiles shown in Fig. 4 correspond to the
same value s=1 of the stratification parameter. In odder to illus-
trate the dependence of the steady temperature distributions on the
parameter s, in Fig. 5 the left-branch temperature profiles have been
plotted as functions of X for the same value A =0.55 of the inten-
sity parameter and the six different values of s considered in Fig. 2a
and b. The characteristic values associated with these temperature
distributions are collected in Table 3.

Fig. 5 and Table 3 show that for the left-branch solutions con-
sidered, both the maximum temperature gy and its coordinate
Xmax increase with increasing values of the stratification parameter
s. Similarly, the rate of total reaction heat release Qx, as well as the
heat flux g(1) increase with increasing values of s, in full agreement

Characteristic values of the four temperature profiles 6 corresponding to s=1 and shown in Fig. 4. The functions 6 are listed in table according to the increasing values of their

maxima 6,4« (the bottom-up sequence in Fig. 4).

0 A K Xo Ximax Ormax Qrot Note

61 0.50531 2.71828 1 0.15729 0.39013 1.54122 Dual solution to 6,

[22) 0.78874 4.44598 0.44832 0.14831 1.18986 418725 Coincident dual solutions at A = Amax
0, 0.50531 17.4406 0.24680 0.13111 2.66929 8.0111 Dual solution to 6,

04 0.4 271034 0.21962 0.12592 3.12652 9.04156 Unique solution
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Fig. 6. The rate of local reaction heat release Q. (X) plotted as function of X the
left-branch temperature profiles shown in Fig. 5. The dots mark the maximum values
Quocalmax included in the last row of Table 3.

with our physical expectation. It is also instructive to calculate, in
addition to Qrot, the rate of the local reaction heat release Q;oqq(X),
which represents the integrand in Eq. (13) of Qxoy, i.e.

Qlocal(x) =A eSX+9(X) (32)

Bearing in mind Eq. (10), one easily obtains for Q.. the explicit
expression

AK

cosh?| \/m(x —Xo)]

One immediately sees that Q,.y(X) reaches at X=Xy its maximum
value

Qlocal,max =K (X =XO) (34)

The values of Qjycq;mqx are included in the last row of Table 3 and
Qjocal(X) given by Eq. (33) is plotted for A=0.55 and s=0, 0.7, 1, 1.5,
1.8 and 2 in Fig. 6.

Comparing Figs. 5 and 6 one sees that the coordinate Xpqx of
Omax coincides with the coordinate Xy of Qjpcqmax ONly for the
non-stratified reactor (s=0), in which case Xngx =X =0, and both
functions 6(X) and Q¢4 (X) are symmetric with respect to the mid-
plane X =0.In the stratified reactor however, both these symmetries
get broken, i.e. Xmax # 0 and Xy # 0. Moreover, Xj is shifted with
respect to Xmax to the right (se also Table 3). Indeed, according to
Eq. (26) one has

2 S
Xo — Xmax = 4/ K arctanh (m) >0 fors>0 (35)

In other words, as an effect of stratification (s # 0), the max-
imum of the steady temperature profiles (10) is “retarded” with
respect to the maximum of the rate Q;,.(X) of local heat release
by exothermic reactions. This (nonlinear) effect becomes manifest
already by a simple inspection of Eq. (32).

Quocal(X) = (33)

5. Summary and conclusions

The steady conduction regime of a parallel-plane packed bed
reactor with a stratified structure and internal volumetric heat
generation by exothermic reactions has been investigated. The
approach was based on an exactly solvable one-dimensional non-
linear mathematical model which involves two experimentally
accessible control parameters, the intensity parameter A and strat-
ification parameter s. From engineering point of view, this model

corresponds to a three dimensional reactor whose y- and z-
dimensions are much larger than the x dimension, i.e. than the
distance 2L between the two plane boundaries (Fig. 1). In this case
the finite-size effects in y- and z-directions of the real reactor can be
neglected, and the results of the (mathematically) one-dimensional
model calculations hold in the three dimensional world as well.
The intensity parameter A is an intrinsic material constant which
is determined by the reaction heat. The stratification parameter
s is rather a geometrical characteristic which is determined by
the way in which the structure of the reacting materials has been
organized between the plane boundaries. Since the problem pos-
sesses a natural left-right symmetry, the positive and negative
values of s are trivially equivalent. The stratification factor esX
increases/decreases from the lower to the upper boundary mono-
tonically when s is positive/negative (Fig. 1). The central issue of
the paper was to investigate the effect of the organized structure of
the reactive granular material on the heat release by the exother-
mic reactions and on the possible steady temperature distributions
when the boundaries of the reactor are kept at the same constant
temperature. The main results of the paper can be summarized as
follows.

1. For every given value of the stratification parameter s> 0, an
upper bound Anmgx(s) of the intensity parameter has been found,
such that above of this maximum value of A no steady tem-
perature solution exists, i.e. the reactor becomes thermally
uncontrollable. The absolute maximum of A is obtained for s=0,
i.e. Amax(0) > Amax(s) for all s> 0.

2. While in the homogeneous (non-stratified) reactor, below Apax
only dual solutions exist, in the stratified structure (s>0) both
unique and dual solutions are possible. The unique solutions
always describe high temperature steady states (hot spots) of
the reactor, while the dual solution branches are associated with
low and high temperature reaction regimes, respectively.

3. Whereas in the homogeneous reactor the steady temperature
filed 6(X) as well as the rate of local heat release Qjy.q(X) always
are symmetric functions with respect to the midplane X=0, in
the stratified case the symmetries of both these functions get
broken (see Figs. 5 and 6). The maximum of the asymmetric
temperature profiles is shifted (for positive s) toward the upper
boundary. This feature is due to the fact that with increasing val-
ues of X, the stratification factor eSX of the source term increases,
too. On this reason the asymmetry of the temperature profiles is
physically expected. However, it is quite surprising that the local
reaction heat release Qj,./(X) plotted in Fig. 6 does not increase
everywhere, but possesses a maximum in the neighborhood of
the upper boundary. This is not obvious from the very begin-
ning since it is the joint effect of the boundary conditions on
the one hand, and of a subtle nonlinear interplay of the explicit
X-dependence via esX and of the implicit X-dependence via 6(X)
present in the expression Qjycq(X) = AeS¥*%X) of the local reaction
heat release, on the other hand.

We may conclude that the stratification exerts a substantial
influence on the steady conduction regime of the reactor. This
circumstance has important consequences for all the practical
applications of the model. Moreover, the range of validity of the
above model calculations extends also to the case of fluidized beds
as long as the thermal diffusion is the governing internal heat
transfer phenomenon compared to the convection. Since in this
regime of the fluidized beds no convective instabilities can occur,
the investigation of a possible crossover between the low and high
temperature conduction regimes under the influence of small per-
turbations is a challenging research objective.
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